Your Perfect Assignment is Just a Click Away

We Write Custom Academic Papers

100% Original, Plagiarism Free, Customized to your instructions!

glass
pen
clip
papers
heaphones

HUMIDITY, CONDENSATION, & CLOUDS

HUMIDITY, CONDENSATION, & CLOUDS

1. What is condensation and what conditions are nec-

essary for condensation to occur?

2. What is evaporation? What conditions make it

more likely to occur?

3. When we say that air is “saturated” what does that

mean?

4. What is humidity?

5. What is relative humidity? How do we calculate the

relative humidity of the air?

6. What are the two ways that we can increase or de- crease the relative humidity

of air?

7. What does the term “dew point temperature” mean? How is the difference be- tween the dew point and air temperature related to

relative humidity?

8. What are the four main cloud groups and their

types? Be able to recognize them in the sky.

5. HUMIDITY, CONDENSATION, & CLOUDS

1/2

9. How can you distinguish altostratus clouds from

cirrostratus?

10. What happens to the general size of clouds as they increase in altitude?

low

middle

high

PUTTING IT INTO PRACTICE PART 1: THE ADIABATIC PROCESS

In this section, you will be calculating the air temperature as a parcel of air lifts up over a mountain range and back down the other side. Assume that the parcel of air starts off with a temperature of 65° F at sea level and a Dew-Point Temperature of 54° F. Dry Adiabatic Rate : 5.5° F for every 1,000 feet of elevation change. The rate at which unsaturated air cools while lifting or warms while descending. Saturted (Wet) Adiabatic Rate: 3.3° F for every 1,000 feet of elevation change. The rate at which saturated air COOLS. Warming air will never maintain 100% relative humidity, so you never use the saturated rate with warming air.

CACLCULATING THE TEMPERATURE OF A RISING PARCEL OF AIR:

1. If the dew point is 54° F and the air temperature is 65° F. At sea level (0ft) on the windward side of the mountain in the diagram below, is the relative humidity of the air starting out at 100%? Why or why not?

2. Assume that this same air is forced upward by a mountain range. When it starts to rise to 1,000ft, will it cool at the DRY or SATURATED adiabatic rate?

3. Using the rate that you chose from question 2, calculate the temperature change on the diagram below up to 2,000 feet. What is the temperature of the parcel of air at 2000 ft?

4. At 2,000 ft., is the relative humidity of the parcel of air 100%? Yes or No?

5. Above 2,000ft, will the rising air begin cooling at the DRY or SATURATED adiabatic rate?

6. On the diagram below, calculate the air temperature changes all the way up to 5,000 feet using the rate you chose in question 5. What is the temperature at 5,000 ft?

0 ft65° F

1,000 ft

2,000 ft

3,000 ft

4,000 ft

5,000 ft

7. On the diagram to the right, finish calculating the air temperature as it descends from 5,000 feet back down to sea level (0ft). What is the tem- perature at sea level on the leeward side of the mountain?

HINT: If the air is forced to descend it will WARM at the Dry Adiabatic Rate.

3/4

TYPES OF CLOUDS

low

middle

high

cl o

u d

s o

f v er

ti ca

l d ev

el o

p m

en t

In the diagram below, draw in and label the major cloud types.

1. The table to the right lists the total amount of water vapor air at specific temperatures can “hold” (capacity). Looking at the data, what general statement can you make about the relationship between temperature and capacity?

2. What is the formula for calculating the relative humidity of air?

3. Suppose it is 40 degrees F outside and there is 2.88 g/kg of water vapor in the air. Using the formula from question #2, calculate the relative humitidy. (Write out all your calculations)

4. What would happen to the relative humidity of this parcel of air if you warmed the air in the scenario above to 60 degrees? Assume there is no change in the amount of water vapor (2.88g/kg). Calcu- late how the relative humidity changed when the air warms to 60 degrees.

5. What is the dew point temperature of the air in this scenario? In other words, at what temperature would this parcel of air reach 100% relative humidity?

4PUTTING IT INTO PRACTICE PART 2: CALCULATING RELATIVE HUMIDITY

Relative Humidity: a percentage describing how close the air is to reaching saturation. Saturation: when the air is at 100% relative humidity and can no longer hold any more water vapor Dew Point: temperature at which a parcel of air reaches saturation (100%RH) Capacity: the total amount of water vapor that air at a specific temperature can “hold”.

CALCULATING RELATIVE HUMIDITY

Temperature (F) Capacity (g/kg) -40 0.12 -30 0.21 -20 0.35 -10 0.58 0 0.94 10 1.52 15 1.89 20 2.34 25 2.88 30 3.54 35 4.33 40 5.28 45 6.40 50 7.74 55 9.32 60 11.19 65 13.38 70 15.95 75 18.94 80 22.43 85 26.48 90 31.16

Order Solution Now

Our Service Charter

1. Professional & Expert Writers: Eminence Papers only hires the best. Our writers are specially selected and recruited, after which they undergo further training to perfect their skills for specialization purposes. Moreover, our writers are holders of masters and Ph.D. degrees. They have impressive academic records, besides being native English speakers.

2. Top Quality Papers: Our customers are always guaranteed of papers that exceed their expectations. All our writers have +5 years of experience. This implies that all papers are written by individuals who are experts in their fields. In addition, the quality team reviews all the papers before sending them to the customers.

3. Plagiarism-Free Papers: All papers provided by Eminence Papers are written from scratch. Appropriate referencing and citation of key information are followed. Plagiarism checkers are used by the Quality assurance team and our editors just to double-check that there are no instances of plagiarism.

4. Timely Delivery: Time wasted is equivalent to a failed dedication and commitment. Eminence Papers is known for timely delivery of any pending customer orders. Customers are well informed of the progress of their papers to ensure they keep track of what the writer is providing before the final draft is sent for grading.

5. Affordable Prices: Our prices are fairly structured to fit in all groups. Any customer willing to place their assignments with us can do so at very affordable prices. In addition, our customers enjoy regular discounts and bonuses.

6. 24/7 Customer Support: At Eminence Papers, we have put in place a team of experts who answer to all customer inquiries promptly. The best part is the ever-availability of the team. Customers can make inquiries anytime.

Phoenix Papers Inc.

Your one stop solution for all your online studies solutions. Hire some of the world's highly rated writers to handle your writing assignments. And guess what, you don't have to break the bank.

© 2021 Phoenix Papers Inc.